LRU Cache medium
Problem Statement
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache
class:
LRUCache(int capacity)
Initialize the LRU cache with positive sizecapacity
.int get(int key)
Return the value of thekey
if the key exists, otherwise return-1
.void put(int key, int value)
Update the value of thekey
if the key exists. Otherwise, add thekey-value
pair to the cache. If the number of keys exceeds thecapacity
from this operation, evict the least recently used key.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Example 2
Input
["LRUCache", "put", "put", "get", "put", "get", "get"]
[[1], [2, 1], [1, 1], [2], [3, 3], [2], [3]]
Output
[null, null, null, 1, null, -1, 3]
Steps and Explanation
The optimal solution uses a combination of a doubly linked list and a hash map.
-
Doubly Linked List: The doubly linked list maintains the order of elements based on recency. The most recently used item is at the head, and the least recently used is at the tail. This allows for O(1) removal from both ends.
-
Hash Map: The hash map (dictionary in Python) stores key-value pairs, with the key mapping to the node in the doubly linked list. This allows for O(1) lookup of keys.
Operations:
-
get(key)
: Look up the key in the hash map. If found, move the corresponding node to the head of the linked list (marking it as most recently used) and return the value. If not found, return -1. -
put(key, value)
:- If the key exists, update the value and move the node to the head.
- If the key doesn't exist:
- If the cache is full, remove the tail node (LRU) from both the linked list and the hash map.
- Add the new node to the head of the linked list and update the hash map.
Code
class Node:
def __init__(self, key, val):
self.key = key
self.val = val
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = {} # key -> Node
self.left = Node(0, 0) # left sentinel node
self.right = Node(0, 0) # right sentinel node
self.left.next = self.right
self.right.prev = self.left
def remove(self, node):
prev, nxt = node.prev, node.next
prev.next, nxt.prev = nxt, prev
def insert(self, node):
prev, nxt = self.right.prev, self.right
prev.next = nxt.prev = node
node.next, node.prev = nxt, prev
def get(self, key: int) -> int:
if key in self.cache:
self.remove(self.cache[key])
self.insert(self.cache[key])
return self.cache[key].val
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.remove(self.cache[key])
self.cache[key] = Node(key, value)
self.insert(self.cache[key])
if len(self.cache) > self.capacity:
lru = self.left.next
self.remove(lru)
del self.cache[lru.key]
Complexity
-
Time Complexity:
get
: O(1)put
: O(1)
-
Space Complexity: O(capacity) The space used is proportional to the capacity of the cache.